A stereoscopic view of the packing of the molecule is shown in Fig. 2. The amide nitrogen, $\mathrm{N}(1)$, forms a hydrogen bond with a carbonyl oxygen, $\mathrm{O}(1)$, related by a centre of symmetry $[\mathrm{N}(1)-\mathrm{H}(\mathrm{N} 1)$ $=0.86(3), \mathrm{N}(1) \cdots \mathrm{O}(1)(-x,-y,-z)=2.853$ (4), $\mathrm{H}(\mathrm{N} 1) \cdots \mathrm{O}(1)(-x,-y,-z)=2 \cdot 00(3) \AA, \quad \mathrm{N}(1)-$ $\left.\mathrm{HN}(1) \cdots \mathrm{O}(1)=172^{\circ}\right]$. The molecules thus form an infinite hydrogen-bonded network.

The authors thank Dr Frank D. Popp of the University of Missouri, Kansas City, for the gift of the sample used in this investigation. AD would like to thank all colleagues at Khalisani College, Chandannagore, Hooghly, for their support and encouragement.

References

Chakraborty, D. K. \& Talapatra, S. K. (1985). Acta Cryst. C41, 1363-1364, 1365-1366.

Codding, P. W., Lee, T. A. \& Richardson, J. F. (1984). J. Med. Chem. 27, 649-654.
De, A. (1990). Acta Cryst. C46, 1891-1893.
De, A. \& Kusunoki, M. (1991). J. Crystallogr. Spectrosc. Res. 21, 57-60.
Dickerson, R. E. \& Geis, I. (1969). The Structure and Function of Proteins. Menlo Park, California: Benjamin.
Itai, A., IItaka, Y. \& Kubo, A. (1978). Acta Cryst. B34, 3775-3777.
James, M. N. G. \& Williams, G. J. B. (1972). Can. J. Chem. 50, 2407-2412.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Popp, F. D. (1977). Anticonvulsants, edited by J. A. VIDA. New York: Academic.
Popp, F. D. (1984). Heterocycl. Chem. 21, 1641-1643.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Spek, A. L. (1990). Acta Cryst. A46, C-31.

Acta Cryst. (1991). C47, 2386-2388

Structure of L-Prolyl-L-tyrosine Monohydrate

By Cheryl L. Klein, Ingenue Cobbinah, Dionne Rouselle and Sr Mary Carl Malmstrom
Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, USA

and Edwin D. Stevens
Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70125, USA

(Received 11 July 1990; accepted 14 May 1991)

Abstract

C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=296 \cdot 32\), triclinic, $P 1, a=5.524$ (3), $b=6.621$ (2), $c=10.307$ (2) \AA, α $=78.82(3), \quad \beta=86.82(4), \quad \gamma=84.96(4)^{\circ}, \quad V=$ $368.11 \AA^{3}, Z=1, \quad D_{x}=1.34 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda\left(\right.$ Mo $\left.K \alpha_{1}\right)=$ $0.70930 \AA, \mu=1.10 \mathrm{~cm}^{-1}, F(000)=158, T=298 \mathrm{~K}$, final $R=0.044$ for 2182 observed reflections. The molecule crystallizes as a zwitterion with the peptide backbone folded and a water molecule of hydration. The water molecule and the dipeptide molecule are involved in an extensive hydrogen-bond network.

Introduction. The crystal structure of the hydrate of the dipeptide l-prolyl-L-tyrosine is reported here as part of a research project involving the X-ray studies of crystalline samples of amino acids and small peptides. We are interested not only in the solid-state structure but also in the intermolecular interactions that occur between dipeptide molecules and those that result from any co-crystallized water.

Experimental. L-Prolyl-L-tyrosine obtained from Sigma Chemical Company, recrystallized from
aqueous ethanol to give colorless crystals, approximate dimensions $0.50 \times 0.30 \times 0.20 \mathrm{~mm}$. EnrafNonius CAD-4 diffractometer with graphite-crystalmonochromatized Mo $K \alpha$ radiation. Unit-cell dimensions, lack of systematic absences and successful solution of the structure determined space group as $P 1$. Unit-cell dimensions were determined by least-squares fit of 25 centered reflections with $43 \leq$ $2 \theta \leq 60^{\circ}$. Three-dimensional intensity data collected in $\omega: 2 \theta$ scan mode; total of 2256 independent reflections, 2182 observed with $I>3 \sigma(I) ; 1 \leq 2 \theta \leq 60^{\circ}$; $[(\sin \theta) / \lambda]_{\max }=0.70 \AA^{-1} ;-7 \leq h \leq 7,-9 \leq k \leq 9,0$ $\leq l \leq 14$. Data corrected for Lorentz and polarization effects. Three standard reflections measured every 2 h during data collection (200, 040, 002) showed no significant change in intensity. Absorption as a function of ψ was corrected empirically (maximum relative transmission 99.91%, minimum relative transmission $85 \cdot 17 \%$). Structure solved by direct methods using the MULTAN11/82 series of programs (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982). Initial E map con(C) 1991 International Union of Crystallography
tained 20 non-H atoms. Remaining atoms including H atoms located in difference Fourier map. Fullmatrix least-squares refinement on F of 21 anisotropic non- H -atom and 20 isotropic H -atom (270 variables) coordinates and temperature factors and a scale factor. Final $R=0.044, w R=0.056$ where $w=$ $1 / \sigma(F)^{2}$ and $\sigma(F)^{2}=\left[\sigma(I)_{\mathrm{cs}}^{2}+(0.04)^{2}\left(F^{2}\right)^{2}\right], S=2.46$ for 2182 observed reflections.

In the final least-squares cycle $(\Delta / \sigma)_{\text {max }}=0.06$. Maximum and minimum peaks in the difference Fourier map were +0.55 and -0.31 e \AA^{-3}, respectively. Scattering factors taken from International Tables for X-ray Crystallography (1974, Vol. IV) are corrected for anomalous-scattering contributions, CAD-4 SDP programs used (Frenz, 1978).

Discussion. Final fractional coordinates for the non-H atoms are given in Table 1.* The numbering system for the molecule can be found in Fig. 1. Bond lengths and angles are given in Table 2. The title compound crystallized as a zwitterion with the proline nitrogen, N 2 , protonated and the carboxylate group unprotonated. There is one water of crystallization in the unit cell. There is an extensive hydrogen-bond network involving the water molecule, carboxylate group, the protonated proline nitrogen and the tyrosine amide nitrogen. The specific hydrogen-bond parameters can be found in Table 3. Although there is a close intramolecular contact distance between O 3 and N 1 and O 4 and N 2 , these are not hydrogen-bonding interactions. [The $\mathrm{O} 3 \cdots \mathrm{~N} 1$ contact distance is $2 \cdot 780(1) \AA$ but the N 1 hydrogen atom, HN1, points away from the O3 atom. Similarly, the $04 \cdots$ N2 distance is 2.644 (1) \AA but the N 2 hydrogen atoms point in the opposite direction from O4.]

The structure of the molecule can be described by the torsional angles along the peptide chain listed in Table 4. The definitions of the torsional angles are those of the IUPAC-IUB Commission on Biochemical Nomenclature (1971). The four-atom chain connecting the five-membered pyrrolidine ring of the proline and the six-membered aromatic ring of the tyrosine is extended in the crystal structure. The peptide backbone is folded with $\varphi_{\mathrm{Tyr}}=-67.9(2)^{\circ}$, $\omega_{\text {Tyr-Pro }}=174.4(1)^{\circ}, \psi_{\mathrm{Tyr}}=-35.0(2)^{\circ}$ and $\psi_{\mathrm{Pro}}=$ $162.2(1)^{\circ}$. It is interesting to compare the structure of the L-Pro-L-Tyr with the structure of the neurotensin tetrapeptide, L-Pro-L-Tyr-L-Ile-L-Leu (Cotrait,

[^0]Table 1. Positional parameters and their estimated standard deviations

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4 / 3) \times$ $\left[a^{2} \beta(1,1)+b^{2} \beta(2,2)+c^{2} \beta(3,3)+a b(\cos \gamma) \beta(1,2)+a c(\cos \beta) \beta(1,3)\right.$ $+b c(\cos \alpha) \beta(2,3)]$.

	x	y	z	$B\left(\AA^{2}\right)$
OW1	$-0.2031(4)$	$0.4558(4)$	$1.5213(2)$	$6.13(4)$
O1	0.035	0.739	1.337	$5.00(3)$
O2	$0.4263(2)$	$0.4040(2)$	$0.8996(1)$	$3.00(2)$
O3	$0.7666(2)$	$0.4905(2)$	$0.7845(1)$	$3.12(2)$
O4	$0.8026(2)$	$-0.0471(2)$	$0.8478(1)$	$3.30(2)$
N1	$1.0179(2)$	$0.1569(2)$	$0.9407(1)$	$2.47(2)$
N2	$1.1831(2)$	$-0.2650(2)$	$0.7643(1)$	$2.47(2)$
C1	$0.2367(4)$	$0.6457(3)$	$1.2849(2)$	$3.58(3)$
C2	$0.3041(4)$	$0.4366(3)$	$1.3205(2)$	$3.66(3)$
C3	$0.5094(4)$	$0.3496(3)$	$1.2604(2)$	$3.39(3)$
C4	$0.6505(3)$	$0.4703(2)$	$1.1644(1)$	$2.83(2)$
C5	$0.5802(4)$	$0.6794(3)$	$1.1322(2)$	$3.84(3)$
C6	$0.3760(5)$	$0.7662(3)$	$1.1911(2)$	$4.17(4)$
C7	$0.8677(3)$	$0.3755(3)$	$1.0966(2)$	$3.14(3)$
C8	$0.7974(2)$	$0.2555(2)$	$0.9930(1)$	$2.25(2)$
C9	$0.6536(2)$	$0.3945(2)$	$0.8819(1)$	$2.11(2)$
C10	$0.9975(2)$	$0.0157(2)$	$0.8670(1)$	$2.27(2)$
C11	$1.2317(2)$	$-0.0675(2)$	$0.8042(1)$	$2.25(2)$
C12	$1.3107(3)$	$0.0741(3)$	$0.6764(2)$	$3.58(3)$
C13	$1.4145(5)$	$-0.0782(4)$	$0.5909(2)$	$4.67(4)$
C14	$1.2402(4)$	$-0.2448(3)$	$0.6196(2)$	$3.98(3)$

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ and their estimated standard deviations

$\mathrm{Ol}-\mathrm{Cl}$	1.362 (2)	C3-C4	1.394 (2)
$\mathrm{O} 2-\mathrm{C} 9$	1.257 (1)	C4-C5	1.385 (2)
O3-C9	1.246 (1)	C4-C7	1.506 (1)
O4-C10	1.227 (1)	C5-C6	1.384 (2)
N1-C8	1.458 (1)	C7-C8	1.534 (1)
N1-C10	1.329 (1)	C8-C9	1.534 (1)
N2-Cl1	1.494 (1)	$\mathrm{Cl}-\mathrm{Cl1}$	1.522 (1)
N2-C14	1.489 (2)	$\mathrm{C} 11-\mathrm{Cl} 2$	1.527 (2)
$\mathrm{Cl}-\mathrm{C} 2$	1.385 (2)	$\mathrm{Cl} 2-\mathrm{Cl} 3$	1.520 (2)
$\mathrm{Cl}-\mathrm{C} 6$	1.375 (2)	C13-C14	1.503 (3)
C2-C3	1.396 (2)		
$\mathrm{C} 8-\mathrm{N}-\mathrm{Cl} 0$	118.86 (8)	N1-C8-C9	111.28 (7)
$\mathrm{Cl1}-\mathrm{N} 2-\mathrm{C} 14$	108.27 (9)	C7-C8-C9	112.03 (8)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 2$	$123 \cdot 0$ (1)	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{O} 3$	125.40 (9)
O1-C1-C6	117.8 (1)	O2-C9-C8	115.51 (9)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	119.2 (1)	O3-C9-C8	119.07 (8)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120 \cdot 1$ (1)	$\mathrm{O} 4-\mathrm{Cl} 0-\mathrm{N} 1$	123.33 (9)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	121.0 (1)	$\mathrm{O} 4-\mathrm{Cl0}-\mathrm{Cl1}$	119.98 (9)
C3-C4-C5	117.4 (1)	$\mathrm{N} 1-\mathrm{Cl} 0-\mathrm{Cl}$	116.69 (8)
C3-C4-C7	$121 \cdot 1$ (1)	N2-Cl1-C10	107.73 (7)
C5-C4-C7	121.5 (1)	$\mathrm{N} 2-\mathrm{Cl1}-\mathrm{Cl} 2$	$105 \cdot 37$ (9)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	121.7 (1)	$\mathrm{Cl} 0-\mathrm{Cl1}-\mathrm{Cl2}$	112.74 (8)
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120 \cdot 5$ (1)	$\mathrm{Cl1}-\mathrm{Cl2}-\mathrm{Cl} 3$	102.6 (1)
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8$	112.91 (9)	C12-C13-C14	103.1 (1)
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	108.69 (8)	N2-C14-Cl3	$103 \cdot 5$ (1)

Fig. 1. ORTEP diagram of L-prolyl-L-tyrosine monohydrate drawn with 50% probability ellipsoids.

Table. 3. Hydrogen-bond distances (\AA) and angles (${ }^{\circ}$)

Donor	Acceptor	Bond length	Symmetry operation
OW1	Ol	2.761 (3)	x, y, z
OW1	H1	2.01 (3)	x, y, z
$\mathrm{OWl} \cdots \mathrm{Hl}-\mathrm{Ol}$	179. (3)		
OW1	03	2.761 (2)	$x-1, y, z+1$
HW1	03	1.95 (3)	$x-1, y, z+1$
$\mathrm{OW} 1-\mathrm{H} W 1 \cdots \mathrm{O}$	161* (3)		
N1	O2	$2 \cdot 867$ (1)	$x-1, y, z$
HN1	02	1.99 (2)	$x-1, y, z$
$\mathrm{N} 1-\mathrm{HN1} \cdots \mathrm{O} 2$	174•(2)		
N2	O2	$2 \cdot 657$ (1)	$x-1, y+1, z$
$\mathrm{HN}^{\prime}{ }^{\prime}$	02	1.77 (2)	$x-1, y+1, z$
$\mathrm{N} 2-\mathrm{HN} 2^{\prime} \cdots \mathrm{O} 2$	172. (2)		
N2	03	$2 \cdot 903$ (1)	$x, y+1, z$
HN2	03	$2 \cdot 15$ (2)	$x, y+1, z$
N2-HN2 \cdots O3	147. (2)		

Geoffre, Hospital \& Precigoux, 1979). The torsion angles in the L-Pro-L-Tyr fragment of the tetrapeptide are very similar to those obtained in the dipeptide. These are $\varphi_{\mathrm{Tyr}}=71.4^{\circ}, \omega_{\mathrm{Tyr}-\mathrm{Pro}}=170.3^{\circ}$ and $\psi_{\mathrm{Tyr}}=-47.9^{\circ}$. Proline is in the cis conformation $\left(\psi \simeq 180^{\circ}\right)$ in the dipeptide with $\psi_{\text {Pro }}=162.2(1)^{\circ}$ as it is in the tetrapeptide with $\psi_{\text {Pro }}=169^{\circ}$. The pyrrolidine ring is puckered with $\mathrm{C} 13-0.611$ (3) \AA out of the plane defined by C11, N2, C14 and C13. The plane of the carboxylate group in the tyrosine is $45 \cdot 2$ (2) ${ }^{\circ}$ to the plane of the aromatic ring. The peptide bond $\mathrm{C} 10-\mathrm{N} 1$ is 1.329 (1) \AA in length. This is shorter than other $\mathrm{N}-\mathrm{C}$ bonds due to the partial

Table 4. Selected torsion angles $\left({ }^{\circ}\right)$

$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	168.2 (1)	
$\mathrm{C10}-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	-67.9 (2)	$\varphi_{\text {Tri }}$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Cl} 0-\mathrm{Cl1}$	174.4 (1)	$\omega_{\text {Tyry Pro }}$
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	61.0 (2)	
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	-175.6 (1)	
$\mathrm{Nl}-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2$	146.5 (1)	$\psi_{\text {TYT }}$
$\mathrm{Nl}-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 3$	-35.0 (2)	$\psi_{\text {TY }}$
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{Cl1-N2}$	162.2 (1)	$\psi_{\text {Pro }}$
$\mathrm{Nl}-\mathrm{Cl}-\mathrm{Cl} 1-\mathrm{C} 22$	-82.0 (2)	

double-bond character of $\mathrm{CO}=\mathrm{NH}$ found in the peptide.

This research was partially supported by the National Institutes of Health MARC program (GM07716).

References

Cotrait, M., Geoffre, S., Hospital, M. \& Precigoux, G. (1979). Acta Cryst. B35, 114-118.

Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - A RealTime System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi. Delft Univ. Press.

IUPAC-IUB Commission on Biochemical Nomenclature (1971). Biochim. Biophys. Acta, 229, 1-17.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTANI1/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1991). C47, 2388-2391

Structure of the 1:1 Complex Formed from 4-Nitropyridine N-Oxide and 2-Aminobenzoic Acid

By R. Moreno Fuquen,* J. R. Lechat and R. H. de Almedda Santos
Instituto de Física e Química de São Carlos, Universidade de São Paulo, CP 369, 13560, São Carlos, SP, Brazil

(Received 21 December 1990; accepted 14 May 1991)

Abstract

C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2} \cdot \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}, M_{r}=277 \cdot 2\), monoclinic, $\quad C c, \quad a=9.522(3), \quad b=10.637(4), \quad c=$ $12 \cdot 611$ (3) $\AA, \beta=104.31$ (2) ${ }^{\circ}, V=1237.7$ (4) $\AA^{3}, Z=$ $4, D_{m}=1.49(1), D_{x}=1.488 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=$ $0.71073 \AA, \quad F(000)=576, \quad \mu=0.111 \mathrm{~mm}^{-1}, \quad T=$ $295 \mathrm{~K}, \quad R=0.0401, \quad w R=0.0392, \quad 834$ observed reflections. The complex is formed by alternate stacking of 4 -nitropyridine N -oxide and 2 -

^[* On leave from Universidad de Valle, Departamento de Química, Cali, Colombia.]

0108-2701/91/112388-04\$03.00
aminobenzoic acid molecules. The resulting stacks follow the [$\overline{1} 10]$ and [110] directions and exhibit overlap between aromatic rings with interplanar distances equal to 3.32 (3) and 3.46 (3) \AA. Besides an intramolecular hydrogen bond with an $\mathrm{N} \cdots \mathrm{O}$ distance of $2 \cdot 675$ (7) \AA between amino and carbonyl groups, intermolecular hydrogen bonds with an $\mathrm{O} \cdots \mathrm{O}$ distance of $2.629(5) \AA$ and an N $\cdots \mathrm{O}$ distance of 2.999 (6) \AA are observed between the carboxyl and N-oxide groups, and the amino and N-oxide groups, respectively, from molecules in neighboring stacks.

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and temperature factors, and bond lengths and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54253 (28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

